
Universal High-Performance Applications with
WebAssembly

Abstract— Building and maintaining applications is an
expensive operation. According to Kinvey report, building an
enterprise level mobile application costs about $270k.
Supporting multiple platforms and operating systems is the
driving cost of the development process. In this paper we
investigate the possibility of using web browsers as computation
containers that allow code to run independently from the
underlying operating system. Progressive Web Applications
became popular in the recent years, however their performance
still worries developers. Therefore, in this paper we concentrate
on the performance aspect of web applications.
Keywords— (web applications, universal applications, web
browsers, web assembly, JavaScript, WebAssembly)

I. INTRODUCTION
Looking at technology from the outside might not show the
whole picture about it. Unfortunately, it is the case with
web browsers. People tend to view web browsers as
applications that allow them to fetch and view documents
stored on a remote server somewhere on the Internet. Some
technical people are aware of some browsers’ features such
as making a secure connection with the server and storing
credentials for their online services. Even if they are using
the browser as an interface to interact with more advanced
online services, such as Google documents [3] or Office
365 [4], they may still underestimate its role in making
those services possible.
In fact, web browsers are much more than that. They
perform numerous jobs that seem to be taken for granted.
Such jobs are taking a foreign code from unknown origin,
not all the times, and execute it safely on our machines.
This code is written by unknown developer, and we as a
consumer, we may have no idea about what that code is
doing.
If we compare that to native codes that we run on our
machines; it is a completely different process. For example,
we download executables, mostly from known sources, and
install them locally. If we need to use the code, we search
for it on our system and run it manually. On the other hand,
the browser downloads the code, runs it with a little
intervention form our side.
Ensuring the safety of our system when running foreign
code is a challenging task. However, the browser handles
that kind of threat by using the concept of isolation. The
foreign code is sandboxed [5]. Meaning, it runs in a
designated memory space and all its activities are contained
in that space. So, the code is not allowed to access other
processes’ address space, even the address space of the
browsers engine itself.

Browsers do not stop at that point. They try to run that code
efficiently and at a high speed. Since JavaScript is the main
programming language for computation in the browsers,
after the failure of Java Applets [6], it became feasible to
optimize browser engines to run JavaScript code faster.
One of inaccurate ideas about JavaScript is that it is slow,
and it is only good to do form processing with some fun
animation in the web page. Sure, JavaScript can do all that,
but nowadays it can do much more.
Even though it is still considered a loosely typed language
with an interpreter, its performance has dramatically
improved [7]. Thanks to the optimizations done to
JavaScript engines, now we can run CPU intensive tasks
easily in the browser.

II. RESEARCH MOTIVATION
The browser is almost available on every machine. All
major Operating systems, ship with a web browser
preinstalled. Even, low end devices such as IoT and smart
phones, come with their own browsers. That makes the
web browser the most ubiquitous application in the history
of computing.
The ubiquity of web browsers makes them attractive to
developers who want their code to reach out to users no
matter what platform they use. The browser literally
became a container to run that code.
Even though, web browsers seem to have a lot of potential
to become the standard platform to run code, they are still
far from achieving that. In this paper we evaluate the
performance of existing web browsers to see how suitable
they are to run applications that require native
implementation, due to performance requirements.

III. CROSS PLATFORM FRAMEWORKS AND RELATED
WORK

In the recent years, we noticed a shift on how software is
being built in terms of making cross platform applications.
Companies such as Microsoft came up with universal
applications that run on Windows 10 and Windows Phone
[8]. The goal was to shorten development time and const.
Other frameworks emerged to build applications that run
on completely different Operating systems. To name a
few, Apache Cardova [9], Fuse Open [10], React Native
[11], NativeScript [12], and recently Futtler[13]. They
work differently, but they all promise the ability to build
applications and compile them to work on virtually all
available platforms.

Jebreel Alamari
Computer Science Department

University of Colorado at
Colorado Springs
Jalamari@uccs.edu

C.Edward Chow
Computer Science Department

University of Colorado at
Colorado Springs
cchow@uccs.edu

ISSN:0975-9646
Jebreel Alamari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (6) , 2020, 102-106

www.ijcsit.com 102

mailto:Jalamari@uccs.edu

A. Cross platform frameworks disadvantages
However, despite the high performance of some of code
generated by these frameworks, such as Flutter they still
suffer from major problems that can be summarized as
follows.
• The learning curve of these frameworks is steep in

some situations. Meaning, that for a company that
decides to go with one of them, their developers need
training. Training costs money and time. In addition,
sticking with one framework might not last for long.
Switching from a framework to another requires more
training.

• Like adapting a new programming language,
switching to another framework is in some situations
like learning a new programming language. Sure,
most of them rely on JavaScript for processing and
communicating with backend services; however, they
require more than just a vanilla JavaScript code. The
layout of the code, packages, and modules make the
framework more intimidating for new commers.

• It is always better to rely on well standardized
technology instead of nonstandard one. When
investing in one of the frameworks, businesses stay
under the mercy of the framework maintainers. Yes,
they are all open source, but you may not have the
expertise required to implement new features that you
might want. It is even worse when there is a major
update on the target platforms. That update could
break your code. In this situation, you need to wait for
framework developers to update their code base, so
you can rebuild and redistribute your code.

• Most of these frameworks support iOS and Android
platforms. That brings us back to the first square in
term of supporting all devices. In case of new
platforms such as Ubuntu Phone [14] of Kai OS [15]
or Tizen [16], we need to wait for developers to
include support for those Operating Systems. One of
the obstacles that face companies who want to build
their own OSs is the lack of applications. Relying of
such frameworks is not a full solution for this
problem.

B. Web Applications advantages

Web applications introduce their own challenges that we
are going to discuss later in the paper, however they solve
almost all problems with native executables.
• Portability

As discussed in the previous sections, web apps only
need a browser to run, and the browser is almost
everywhere. Regardless of the operating system,
underline architecture the code with still run.

• Ease of development
Developing for the web front end, we use HTML5,
JavaScript, and CSS. That is all a developer needs to
master. Straight forward syntax that does not need to
change from time to time, because these three
technologies are well standardized in virtually all
browsers.

• Ease of distributions
With the world wide web, the only thing we need to
distribute a web app is to share a link. No App Store
license or fees required. No app store ban on your
application for whatever reason the platform
stakeholders decide to take your application down of
their platform.
Updating your application, is even more convenient.
Update it once in one place, and it takes effect on
every user's device.

C. Web Applications disadvantages

Switching to building web applications is not a magic
bullet that solves all the problems we mentioned. Here are
some existing obstacles that makes companies and
developers go with building a native code or even use one
of the frameworks we mentioned before.
• Performance

As we strive to make a single code that is platform,
architecture independent, the performance is still the
main problem here. Like Java that came to solve this
problem three decades ago with having a Virtual
Machine to facilitate the executing on different
computers, it has not achieved the same performance
as code written for a specific machine [17]. That is
due to the overhead of the virtual machine.
JavaScript, the main language on the browser, runs
like Java. There is a Virtual Machine or an interpreter,
that allows JavaScript to run on different
architectures. Unlike Java that is well typed,
JavaScript is untyped programming language. That
imposes a new problem with JavaScript execution
performance because there is a type check on the
variable whenever we need to manipulate its value.

 JavaScript engines adapted the technique used in Java
VM, by introducing JIT (Just in Time) compilers. JIT
compilers bring a substantial improvement to the
performance of JavaScript, however, unlike Jave JIT,
they need to do deoptimization if the type of an object
has changed during the run time. These
deoptimizations are expensive especially if types keep
changing during run time. It is common in JavaScript
Object to change shapes; simply by adding or
removing properties during runtime. JavaScript
implementers need to comply with its standards that
allow this kind of behavior [18].

• Connectivity
 In some sense, web applications, are websites.
Accessing a website requires having an internet
connection. On the other hand, unless it requires
connecting to a backend service, a native app is stored
locally on user’s device and available when needed.
This issue persisted with web applications for a long
time. However, recently, this is its way to go.
Nowadays, web browsers ship with tremendous
capabilities such as storing data in a persistent storage
in user’s hard drive. These storages are efficient to
store data and retrieve them. They are implemented
natively in the browser and there is a JavaScript APIs
to access and use them.

Jebreel Alamari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (6) , 2020, 102-106

www.ijcsit.com 103

The browser has different types of persistent storages.
For example, LocalStorage, a quick way store data as
a Key Value pairs, and Indexed DB is a persistent
high-performance transactional database [19] that is
W3C recommendation [20].
We can also store code files locally with appCache
API [21]. The user only needs to connect the
application once, then the app will be installed in the
browser. There will be no need to connect to the
internet unless local data has cleared which is a
problem that needs to be considered.
Keeping the data save in the local storage is handled
using WebCryptography API that is also natively
implemented in the browser [22].

• Native feeling
This is still a challenging part however with using
clever CSS styling we can make it look close to
native. Browsers use their proprietary rendering
engines. The application may look different than
native counterpart because of the way HTML5
elements are rendered on the page. However, with
clever CSS rules manipulations, and third-party
libraries, it is possible to mimic the native UI of major
platforms.

IV. METHODOLOGY

There is a lot of research done to test the performance of
code written in JavaScript [7][23]. Our goal here is
different. It is to test whether web browsers are ready to
become the containers that take care of computation on all
platforms.
We were dedicated to cover almost all aspects of
computation that a native code does and compare it to the
web version of the same code.
 First, we started by running an image manipulation
program using OpenCV [24] library. We tested the same
algorithm on the same data on different operating systems
and browsers on those operating systems.
 We compiled the code targeting all operating systems in
our experiment. The rationale behind this experiment is to
see the performance difference between the code when is
run and managed by the browser, and when the same code
it is run and managed by the operating system.
We used Emscripten compiler to compile [25] C/C++
codes and export them to the browser. We utilized Ostrich
benchmark suite [26] for this purpose. Ostrich was a good
candidate for our experiment because it supports C/C++
and JavaScript. However, its support for WebAssembly is
limited. We had to modify the build system for the
benchmark to make it suitable to be compiled by
Emscripten compiler. Our updated version of Ostrich
benchmark kernels are fully compiled to standalone
WebAssembly modules.
Another challenging task we faced, in order to make a fair
performance comparison, was compiling code to native
iOS and Android codes.

A. Experiment Environment
We tried to cover as many as possible devices and
operating systems. Table1 of devices that we use in our
experiments.

1) The back end
Just like a typical web application, having a high
performance back-end with high bandwidth is crucial. Our
experiment is mainly concerned about how fast the code
can run in the browser compared to the equivalent native
code; however, it is important to load the code logic as fast
as possible to the web page.

2) Web Browsers
For the sake of platform independence, we only test
browsers that are not proprietary. In other words, browsers
that are available for all devices being tested. So, we
excluded Safari, Samsung browser. We also excluded
Microsoft Edge and Opera because they are both running
V8 JavaScript engine like Google Chrome. Therefore, the
browsers that we tested were Mozilla Firefox, and Google
Chrome. Mozilla SpiderMonkey JavaScript engine seems
to be the right JavaScript engine to compare with V8
because they are both open source and available on
different platforms.

Operating
System

Device specs

iMac,
running
macOS
Catalina

3.2 GHz Quad-Core intel Core i5
with 16 Gig of RAM.

Dell
inspiron,
running
Windows 10

2.4 GHz Quad-Core Intel Core i7
with 12 Gig of RAM.

Dell
OptiPlex
990, running
Ubuntu 18.4

3.7 GHz Intel Core i7 VPro with
8 Gig of RAM

Galaxy S10
Plus,
running
Android 10

2.73 Octa-Core Samsung Exynos
9820 with 8 Gig of RAM.

iPhone X S
MAX,
running iOS
13

2.6 Hex-Core A12 Bionic with 4
Gig of RAM.

TABLE 1: EXPERIMENT ENVIRONMENT

Machine Specs
Local Server 2.20 12-Core intel

Xeon with 64 Gig of
RAM

AWS EC2 instance 8 vCPU and 16 Gig of
RAM.

TABLE 2: BACK-END

Jebreel Alamari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (6) , 2020, 102-106

www.ijcsit.com 104

V. RESULTS AND DISCUSSIONS
In this section we show the results of our experiments.
Figures 1,2,3 shows the performance of Native code,
Chrome, and Firefox, respectively. On the x-axis we have
OpenCV algorithms that we implemented, and on the y-
axis, we see the time taken by the process to finish
manipulating the image in Milliseconds. Native code is the
code that we complied and natively on every platform.

FIGURE 1: Performance Of Native Code. Time in ms

Figure 2: The performance in Google Chrome. Time in

ms.

Figure 3: The performance of Firefox. Time in ms.

Regardless of what machine perform the best, our goal is
to compare every machine with itself. In other words,
when the code is running on the same machine, but one is
in the browser and the second on the machine itself.
Overall results don’t show a significant difference in the
performance. It means a developer decides to develop such
application using web technologies, the app is not going to
suffer much of a performance issue.
With the introduction WebAssembly (high performance
compact bytecode), We decided to test its performance
compared to native C/C++ using OpenCV capability. In
figure 4 we see how much time(ms) it takes
WebAsseembly (WASM) compared to C++ code to
perform face/eyes detection. It is worth mentioning that
we used Haar.js face detector.

Figure 4: OpenCV face/eye detector performance. Time in

ms.

Using Haar.js could be the reason why WASM code was
slower than C/C++. We may end up with better results if
our face detector was compiled to WebAssembly.
Figure 5 depicts the average time, in seconds, taken by
WASM compared to the average time taken by native
code in all devices in the experiment. Both codes do the
same work on the exact input and generate the exact
output.
The source code here was taken from Ostrich benchmark
that we compiled to WASM using Emscripten compiler.
It is worth mentioning that these kernels were also
compiled to native Android/iOS codes. Even though it was
a time-consuming task, but we thought it was the right
way to get a clear picture about WASM performance.

Figure 5: Performance of WASM vs Native. Time in

Seconds

0
0.5

1
1.5

2
2.5

3
3.5

4

Native Code WASM

Jebreel Alamari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (6) , 2020, 102-106

www.ijcsit.com 105

VI. CONCLUSION
In this paper we demonstrated the ability for web browsers
to handle CPU-intensive tasks. Since it is the most
ubiquitous application, the browser as a computation
container will improve the portability of apps.
Encouraging, developers and searchers to target web
browsers, would free software industry from single
platform domination and app stores restrictions. The
browser, as VM to run web applications, will continue to
fulfill Java goal of building code once and run it
everywhere. Developers will be relieved from maintaining
different codebases in order to support multiple operating
systems. In addition, supporting computation in the
browser will open the door for new operating systems,
because all applications will be available for them as long
as there is a web browser installed on the system.

REFERENCES
[1] “Figuring the costs of mobile app development | Formotus.”

https://www.formotus.com/blog/figuring-the-costs-of-custom-
mobile-business-app-development (accessed Nov. 19, 2019).

[2] “web.dev,” web.dev. https://web.dev/progressive-web-apps/
(accessed Sep. 21, 2019).

[3] “Google Docs: Free Online Documents for Personal Use.”
https://www.google.com/docs/about/ (accessed Mar. 13, 2020).

[4] “Microsoft Office Home.” https://www.office.com (accessed Aug.
10, 2020).

[5] S. Van Acker and A. Sabelfeld, “JavaScript Sandboxing: Isolating
and Restricting Client-Side JavaScript,” in Foundations of Security
Analysis and Design VIII: FOSAD 2014/2015/2016 Tutorial
Lectures, A. Aldini, J. Lopez, and F. Martinelli, Eds. Cham:
Springer International Publishing, 2016, pp. 32–86.

[6] S. Gritzalis and J. Iliadis, “Addressing security issues in
programming languages for mobile code,” in Proceedings Ninth
International Workshop on Database and Expert Systems
Applications (Cat. No.98EX130), Aug. 1998, pp. 288–293, doi:
10.1109/DEXA.1998.707415.

[7] C. Radoi, S. Herhut, J. Sreeram, and D. Dig, “Are Web
Applications Ready for Parallelism?,” p. 2.

[8] QuinnRadich, “What’s a Universal Windows Platform (UWP) app?
- UWP applications.” https://docs.microsoft.com/en-
us/windows/uwp/get-started/universal-application-platform-guide
(accessed Aug. 11, 2020).

[9] “Apache Cordova.” https://cordova.apache.org/ (accessed Aug. 11,
2020).

[10] “Fuse Open,” Fuse Open. https://fuse-open.github.io/ (accessed
Aug. 11, 2020).

[11] “React Native · A framework for building native apps using
React.” https://reactnative.dev/ (accessed Aug. 11, 2020).

[12] “Native mobile apps with Angular, Vue.js, TypeScript, JavaScript -
NativeScript,” NativeScript.org. https://www.nativescript.org/
(accessed Aug. 11, 2020).

[13] “Flutter - Beautiful native apps in record time.” https://flutter.dev/
(accessed Aug. 31, 2020)

[14] “Devices | Ubuntu Phone documentation.”
https://phone.docs.ubuntu.com/en/devices/ (accessed Jul. 3, 2020).

[15] “Home,” KaiOS. https://www.kaiostech.com/ (accessed Jul. 21,
2020).

[16] “Tizen | An open source, standards-based software platform for
multiple device categories.” https://www.tizen.org/ (accessed Aug.
21, 2020).

[17] “Java | Definition & Facts,” Encyclopedia Britannica.
https://www.britannica.com/technology/Java-computer-
programming-language (accessed Mar. 28, 2020).

[18] “ECMAScript® 2019 Language Specification.” https://www.ecma-
international.org/ecma-262/10.0/index.html (accessed Aug. 11,
2020).

[19] A. Al-Shaikh and A. Sleit, “Evaluating IndexedDB performance on
web browsers,” in 2017 8th International Conference on
Information Technology (ICIT), May 2017, pp. 488–494, doi:
10.1109/ICITECH.2017.8080047.

[20] “Indexed Database API 2.0.” https://www.w3.org/TR/IndexedDB-
2/ (accessed Jan. 20, 2020).

[21] “5.6 Offline Web applications — HTML5.”
https://www.w3.org/TR/2011/WD-html5-20110525/offline.html
(accessed Aug. 31, 2020).

[22] “Web Cryptography API.”
https://www.w3.org/TR/WebCryptoAPI/ (accessed . Aug. 3, 2020).

[23] D. Herrera, H. Chen, E. Lavoie, and L. Hendren, “WebAssembly
and JavaScript Challenge: Numerical program performance using
modern browser technologies and devices,” p. 26.

[24] “OpenCV.” https://opencv.org/ (accessed Mar. 14, 2020).
[25] A. Zakai, “Emscripten: an LLVM-to-JavaScript compiler,” in

Proceedings of the ACM international conference companion on
Object oriented programming systems languages and applications
companion - SPLASH ’11, Portland, Oregon, USA, 2011, p. 301,
doi: 10.1145/2048147.2048224.

.

Jebreel Alamari et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (6) , 2020, 102-106

www.ijcsit.com 106

https://www.formotus.com/blog/figuring-the-costs-of-custom-mobile-business-app-development
https://www.formotus.com/blog/figuring-the-costs-of-custom-mobile-business-app-development
https://web.dev/progressive-web-apps/
https://www.google.com/docs/about/
https://www.office.com/
https://doi.org/10.1109/DEXA.1998.707415
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://docs.microsoft.com/en-us/windows/uwp/get-started/universal-application-platform-guide
https://cordova.apache.org/
https://fuse-open.github.io/
https://reactnative.dev/
https://www.nativescript.org/
https://flutter.dev/
https://phone.docs.ubuntu.com/en/devices/
https://www.kaiostech.com/
https://www.tizen.org/
https://www.britannica.com/technology/Java-computer-programming-language
https://www.britannica.com/technology/Java-computer-programming-language
https://www.ecma-international.org/ecma-262/10.0/index.html
https://www.ecma-international.org/ecma-262/10.0/index.html
https://doi.org/10.1109/ICITECH.2017.8080047
https://www.w3.org/TR/IndexedDB-2/
https://www.w3.org/TR/IndexedDB-2/
https://www.w3.org/TR/2011/WD-html5-20110525/offline.html
https://www.w3.org/TR/WebCryptoAPI/
https://opencv.org/
https://doi.org/10.1145/2048147.2048224

	I. Introduction

